
Linkex: A Tool for Link Key Discovery Based on Pattern
Structure

Nacira Abbas∗, Jérôme David∗∗

Amedeo Napoli∗

∗Université de Lorraine, CNRS, Inria, Loria, F-54000 Nancy, France,
nacira.abbas@inria.fr

amedeo.napoli@loria.fr
∗∗Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France

jerome.david@inria.fr

Abstract. Links constitute the core of Linked Data philosophy. With the high
growth of data published in the web, many frameworks have been proposed to
deal with the link discovery problem, and particularly the identity links. Finding
such kinds of links between different RDF data sets is a critical task. In this
position paper, we focus on link key which consists of sets of pairs of properties
identifying the same entities across heterogeneous datasets. We also propose
to formalize the problem of link key discovery using Pattern Structures (PS),
the generalization of Formal Concept Analysis dealing with non binary datasets.
After providing the proper definitions of link keys and setting the problem in
terms of PS, we show that the intents of the pattern concepts correspond to link
keys and their extents to sets of identity links generated by their intents. Finally,
we discuss an implementation of this framework and we show the applicability
and the scalability of the proposed method.

1 Introduction
Data interlinking is the task of finding the same entities described in different RDF datasets.

Two main approaches have been proposed to perform this task: numerical-based methods that
measure a similarity between entities and consider that the closest the entities, the more likely
they are the same (Volz et al., 2009; Ngomo and Auer, 2011). Logical-based approaches where
logical rules are used, which express sufficient conditions for two entities to be the same (Saïs
et al., 2007; Al-Bakri et al., 2015, 2016; Hogan et al., 2012). One of these approaches is based
on link keys (Atencia et al., 2014a) that extend the notion of a key used in databases. Link keys
are rules allowing to infer identity links between RDF datasets. In practice, a link key is a set
of pairs of properties from two datasets that generate same-as links.

An example of a link key is:

{〈auteur,creator〉}{〈titre, title〉} linkkey 〈Livre,Book〉

stating that whenever an instance of the class Livre has the same values for property auteur
as an instance of class Book has for property creator and they share at least one value for

their property titre and title, then they denote the same entity. An algorithm to extract link
key candidates is proposed in (Atencia et al., 2014a). However, these candidates are not yet
link keys. In order to select the best link key candidate to apply as a link key, supervised and
unsupervised measures have been proposed to asses the quality of link key candidates but this
is out of the scope of this paper.

The question of using Formal Concept Analysis (FCA) to extract such kind of keys has
naturally arisen, given that the set of link key candidates is an ordered structure. A first for-
malization is given in (Atencia et al., 2014b) then developed in (Atencia et al., 2019). Here,
given two classes belonging to different RDF datasets, to find link key candidates among these
classes, an encoding of formal context is proposed where a relation is defined between a set
of objects, which correspond to pairs of instances, and a set of scaled attributes obtained by
applying existential and universal scaling operators to the set of pairs of properties. Scaling
(binarizing) data may not be efficient, particularly when we have to deal with a large number
of entries like RDF datasets. In this position paper, instead of scaling, we propose to work
directly on link key expressions which are the syntactic formulations of link keys. To do that,
we use Pattern Structures (Ganter and Kuznetsov, 2001), a generalization of FCA to deal with
non binary data, where objects are pairs of instances and their descriptions are link key expres-
sions. We show that the intents of resulting pattern concepts correspond to link key candidates
and their extents to sets of identity links generated by their intents.

In the following, we first give some definitions and notations. Then, we introduce a Pattern
Structure view of link key extraction problem. Finally, we present a prototype tool which ex-
tracts link key candidates using Pattern Structures and we show the applicability and scalability
of this tool by applying it to real datasets.

2 Notations and definitions
An RDF dataset is a set of triples:

〈sub ject, property,ob ject〉 ∈ (U ∪B)×U× (U ∪B∪L)

Where U is a set of IRIs (Internationalized Resource Identifier), B a set of blank nodes i.e.
anonymous resources and L a set of literals, i.e., values depending on datatypes. In this work,
we consider only objects which are literals. To avoid confusion with Pattern Structures objects,
we refer to "object" in an RDF triple as "rdf object".

Let D,D
′

be two RDF datasets, we aim to discover link keys between two specific classes
C, C

′
from D,D

′
respectively.

C = {s|〈s,rdf:type,C〉 ∈ D} and C
′
= {s′ |〈s′ ,rdf:type,C

′〉 ∈ D
′} are the sets of instances C and

C
′
respectively. P = {p|∃s,o, 〈s, p,o〉 ∈D} and P

′
= {p

′ |∃s′ ,o′ , 〈s′ , p
′
,o
′〉 ∈D

′} are the sets of
properties from D and D

′
respectively.

Unlike databases, the properties in RDF are not functional i.e. for one property, an instance
may have more than one value i.e. rdf object.
Here, p(s) = {o|∃s, p, 〈s, p,o〉 ∈ D} is the set of the values of an instance s for the property p.

Figure 1 represents an example of two datasets. The first one, contains instances of the
class Person and the second one contains instances of the class Inhabitant. An example of an
RDF triple here is 〈i1,name,Dubois〉, expressing that i1 has the value "Dubois" for the property
name. The goal here is to find a link key which identifies the same entities described in both

2

o1 : z1

o1 : z2

o1 : z3

Dupont

Thomas

Dubois

Durand

Lisa

o2 : i1

o2 : i2

o2 : i3

o1:lastName

o1:firstName

o1:firstName

o1:lastName

o1:lastName

o1:firstName

o2:name

o2:given

o2:given

o2:name

o2:name

o1:given

o2:name

o1 : Person o2 : Inhabitant

FIG. 1 – Example of two datasets representing respectively instances of classes Person and
Inhabitant.

classes. One may expect to identify that z1 is the same entity as i1 i.e. the link 〈z1, i1〉 as well
as the links 〈z2, i2〉 and 〈z3, i3〉.

A link key is a statement of the form:
{〈p1, p

′
1〉, ..,〈pk, p

′
k〉}{〈p1, p

′
1〉, ..,〈pk, p

′
k〉, ..,〈pn, p

′
n〉} linkkey 〈C,C

′〉
meaning that for all pairs of instances 〈s,s′〉 ∈ C×C

′
, if s and s

′
have the same values,

i.e. rdf objects, for each pairs of properties p1,..,k and p
′
1,..,k respectively, and share at least one

value for each pair of properties pk+1,..,n and p
′
k+1,..,n respectively, then they represent the same

entity i.e. (〈s,owl:sameAs,s′〉).

Definition 1 (Link key expression) Let Eq and In be sets of pairs of properties 〈p, p
′〉 ∈ P×

P
′

where Eq⊆ In. K = 〈Eq, In,〈C,C
′〉〉 is called a link key expression over two classes C,C

′
.

Notice that Eq and In may be empty.

Since Eq ⊆ In, we write K = Eq, In \ Eq for short. Which means that when a pair of
properties belongs to the Eq part, we don’t represent it in the In part.

As example of link key expression over the two classes Person and Inhabitant, we have:
{},{〈lastName,name〉,〈 f irstName,given〉} where Eq is empty.

Definition 2 (Satisfaction of a link key expression) We say that a link 〈s,s′〉 ∈C×C
′

satis-
fies the link key expression K = Eq, In and we write K |= 〈s,s′〉 iff:

∀〈p, p
′〉 ∈ Eq=⇒p(s) = p

′
(s
′
) 6= /0 and ∀〈p, p

′〉 ∈ In=⇒p(s)∩ p
′
(s
′
) 6= /0

Notice that a link may satisfies more than one link key expression.
The set L(K) = {〈s,s′〉 ∈C×C

′ |K |= 〈s,s′〉} is the set of all links satisfying K and called
the link set generated by K. In the above example, the link 〈z3, i3〉 satisfies the link key expres-
sion {〈 f irstName,given〉},{〈lastName,name〉}, but it doesn’t satisfy the link key expression:
{〈 f irstName,given〉,〈lastName,name〉},{} since the instances z3 and i3 don’t have the same
values for the properties lastName and name respectively.

3

Definition 3 (meet, join, subsumption of link key expressions) Let K1 = Eq1, In1 and K2 =
Eq2, In2 two link key expressions. The meet u and join t of K1 and K2 are defined respectively
as follow:

K1uK2 = Eq1∩Eq2, In1∩ In2 and K1tK2 = Eq1∪Eq2, In1∪ In2

We say K2 subsumes K1 and we write K1 v K2 iff K1uK2 = K1 where v is a partial order
between link key expressions.

For example we have:
K1 = {〈lastName,name〉,〈 f irstName,given〉},{}
K2 = {〈 f irstName,given〉},{}
K1uK2 = {〈 f irstName,given〉},{}= K2 which means that K2 v K1.
K1tK2 = {〈lastName,name〉,〈 f irstName,given〉},{}.

3 Link key extraction with Pattern Structure

Pattern Structures (Ganter and Kuznetsov, 2001) are a generalization of FCA (Ganter and
Wille, 2012) to deal with complex data such as graphs or intervals. While FCA starts from
a binary relation between objects and attributes, Pattern Structures relates each object to its
description. In follows, we define a Pattern Structure for link key extraction.

Definition 4 (Pattern Structure for link key extraction) A Pattern Structure for link keys ex-
traction is a triple (C×C

′
,(D,u,t),δ) where, C×C

′
is the set a pair of instances 〈s,s′〉 ∈

C×C
′
. D is a set of link key expressions over the two classes C and C

′
. δ is a mapping associ-

ating each pair of instances 〈s,s′〉 ∈C×C
′
to its description K, defined as the maximal link key

expression satisfied by 〈s,s′〉 i.e. the join of the link expressions satisfied by 〈s,s′〉. Formally,

δ (〈s,s′〉) = t{K|K |= 〈s,s′〉}

(D,u,t) is a lattice. The meet, join and subsumption of two link key expressions are defined
as in Definition 3.

From the previous example of datasets represented in Figure 1, we obtained the Pattern
Structure in Table 1. Here for example, to find δ (〈z1, i1〉), we have computed the join of all
link key expressions satisfied by the link 〈z1, i1〉 and we obtained the description δ (〈z1, i1〉) =
{〈lastName,name〉,〈 f irstName,given〉},{}.

Notice that we omit pairs of instances for which descriptions correspond to the empty link
key expression K = {},{}.

Derivation operators .� are defined as follows for A⊆C×C
′

and K ∈ D:
A� = u〈s,s′ 〉∈Aδ (〈s,s′〉) and K� = {〈s,s′〉 |K v δ (〈s,s′〉)}

(A,K) is a pattern concept if A� = K and K� = A. We say that a pattern concept (A,K) is
subsumed by another pattern concept (A1,K1) if A⊆ A1 (or equivalently if K1 v K). From the
lattice represented in Figure 2 we have the pattern concept
{〈z1, i1〉,〈z2, i2〉}, {〈lastName,name〉,〈 f irstName,given〉},{}.

We aim to extract link key candidates using the Pattern Structure defined above. First we
give a formal definition of a link key candidate :

4

Definition 5 (Link key candidate) A link key expression K is a link key candidate over two
classes C,C

′
if L(K) 6= /0 and there is no link key expression H such as H v K that generates

the same link set as K i.e. L(K) 6= L(H)

For example, the link key expression {〈lastName,name〉,〈 f irstName,given〉},{} is a link
key candidate. Where as {〈lastName,given〉},{} is not, because it doesn’t generate any link.

One can see that, if (A,K) is a pattern concept, then its intent K represents a link key
candidate and its extent is the link set generated by this link key candidate.

For example, the pattern concept:
{〈z1, i1〉,〈z2, i2〉,〈z3, i3〉}, {〈 f irstName,given〉},{〈lastName,name〉}, identify the link key can-
didate {〈 f irstName,given〉},{〈lastName,name〉}, i.e. the intent, which generates the link set
{〈z1, i1〉,〈z2, i2〉,〈z3, i3〉} i.e. the extent. This link key candidate can be applied as a link key.
In fact, it generates the expected links. This link key states that whenever an instance of the
class Person has same values for property f irstName as an instance of class Inhabitant has for
property given and they share at least one value for their property lastName and name then they
denote the same entity. For example the instances z3 and i3 represent the same person since
both of them had the same first name and share at least one family name. The class Inhabitant
gives, for example, the birth name and the married name while the class Person gives just one
of these two.

Eq In
〈z1, i1〉 {〈lastName,name〉,〈 f irstName,given〉} {}
〈z1, i2〉 {〈 f irstName,given〉} {}
〈z2, i1〉 {〈 f irstName,given〉} {}
〈z2, i2〉 {〈lastName,name〉,〈 f irstName,given〉} {}
〈z2, i3〉 /0 {〈lastName,name〉}
〈z3, i2〉 {〈lastName,name〉} {}
〈z3, i3〉 {〈 f irstName,given〉} {〈lastName,name〉}

TAB. 1 – The pattern structure computed from RDF datasets represented in Figure 1

<{} , {}>

<{(o1:firstname,o2:given)} , {}>

(o1:z1,o2:i2),(o1:z2,o2:i1)

<{} , {(o1:lastname,o2:name)}>

(o1:z2,o2:i3)

<{(o1:firstname,o2:given)} , {(o1:lastname,o2:name)}>

(o1:z3,o2:i3)

<{(o1:firstname,o2:given),(o1:lastname,o2:name)} , {}>

(o1:z1,o2:i1),(o1:z2,o2:i2)

<{(o1:lastname,o2:name)} , {}>

(o1:z3,o2:i2)

∅ ∅

∅

FIG. 2 – The resulting lattice from the pattern structure in Table 1.

The resulting pattern concept lattice presents in an elegant way the space of link key can-
didates and the links they generate. When the resulting lattice is small, an expert has the

5

possibility to navigate the lattice in order to choose an appropriate link key. In the opposite
case i.e. when the lattice is big, one may apply quality measures to rank the resulting link key
candidates and select the best one to apply. These two options are available in the impleman-
tation that we present in this paper.

4 Tool Description
We have implemented a prototype tool called Linkex 1, which aims to extract link key

candidates using Pattern Structures. It starts from two RDF data sets and generates a pattern
concept lattice. The intent of each resulting pattern concept corresponds to a link key candidate
and its extent to the set of identity links generated by its underlying intent (link key candidate).
In practice, the two datasets are given as files (which may be encoded in RDF/XML, turtle or
n-triples) or retrieved in web datasets thanks to SPARQL constraint query. Linkex performs
the following treatments:

1. From RDF datasets to pattern structure: First we proceed to value normalization:
putting all alphabetic characters in lowercase, tokenization, removal of diacritics and
spaces and finally sorts token sequences in alphabetical order. Then we remove non-
discriminating properties (i.e., properties for which all instances have the same value)
and properties with weak support (i.e., which have very little frequency). Finally, we
compute the description of each pair of instances and construct the Pattern Structure.

2. Building the pattern concept lattice: We generate the pattern concept lattice using a
modified version of AddIntent algorithm (Van Der Merwe et al., 2004) .

3. When the resulting pattern concept lattice is small, Linkex gives the possibility to
visualize link key candidates in a nice way i.e. organized in a lattice represented by a
Hasse diagram. For example the Figure 2, which represents a pattern concept lattice, is
a direct output of this tool.

4. Since, the resulting pattern concept lattice doesn’t tell us which link key candidate to
select as a link key. This tool offer the possibility to asses the quality of the extracted
link keys candidates using supervised (recall, precision) and unsupervised measures
(coverage, discriminability). See (Atencia et al., 2014a) for details.

To demonstrate the applicability and the scalability of the proposed tool, we have experi-
mented with two bibliographical datasets, that contains description of authors and the books
that they have written. The first one 2, called here BnF, is produced by BnF, the "Bibliothèque
nationale de France" which is the French national library. The second one 3, called here IdRef,
is produced by ABES, "Agence Bibliographique de l’Enseignement Supérieur" which is the
french bibliographic agency of academic libraries.

We aim here to find link key candidates between instances of the classes representing au-
thors contained in both datasets. However, the datasets are large, for example the BnF dataset
contains 2,221,471 authors. For this reason, BnF and ABES, have provided us with two sam-
ples of data for the experiments.

1. https://gitlab.inria.fr/moex/linkex
2. https://data.bnf.fr
3. https://www.idref.fr

6

The first sample, called variant 1, is an extraction of authors instances (and their books
instances) that have a combination firstname, name which is in the top 1000 most frequent
homonyms. The second sample, called variant 2, is an extraction of all authors instances
(and their book instances) that have a name starting with letter ’A’. We have performed these
experiments using a MacBookPro11,3, Intel Core i7 @2,3 GHz with 10GB RAM allocated to
the Java virtual machine.

As showed in Table 2, we got short running times comparing to the size of processed data.
Notice that, the processing time is correlated to the size of datasets. Yet, the most interesting
result here is the number of the obtained pattern concepts i.e. the number of link key candidates
represented by the column #PatternConcepts in Table 2. For example, in variant 1, from
1,564,495 pattern structure descriptions, we got only 155 link key candidates.

As a direct consequence of this, is that an expert could easily navigate these link key can-
didates and evaluate them. Thus, we can say that the proposed method implemented as Linkex
is applicable and scalable.

.
Variant #BnF #IdRef #PsEntries #PatternConcepts Processing time

Variant 1 15,421 8,162 1,564,495 155 2m10
Variant 2 142,571 18,637 12,348,012 186 6m50

TAB. 2 – Experimentation results

5 Conclusions
In this work, we formalize the problem of extracting link key candidates using Pattern

Structures and we propose a tool allowing to automatically build a pattern concept lattice where
each pattern concept intent is a candidate link key. We aim to extend this work to consider
interdependent classes i.e when rdf objects are instances of other classes and we plan also to
relax equality constraints used to compare literals by considering similarity measures instead.

Acknowledgments
This work has been supported by the ANR project Elker (ANR-17-CE23-0007-01) and the

Bibliothèque Nationale de France in the context of the agreement between Inria and Ministère
de la culture.

References
Al-Bakri, M., M. Atencia, J. David, S. Lalande, and M.-C. Rousset (2016). Uncertainty-

sensitive reasoning for inferring same as facts in linked data. In Proceedings of the Twenty-
second European Conference on Artificial Intelligence, pp. 698–706. IOS press.

Al-Bakri, M., M. Atencia, S. Lalande, and M.-C. Rousset (2015). Inferring same-as facts from
linked data: an iterative import-by-query approach. In Twenty-Ninth AAAI Conference on
Artificial Intelligence.

7

Atencia, M., J. David, and J. Euzenat (2014a). Data interlinking through robust linkkey ex-
traction. In ECAI, pp. 15–20.

Atencia, M., J. David, and J. Euzenat (2014b). What can fca do for database linkkey extraction?
In 3rd ECAI workshop on What can FCA do for Artificial Intelligence?(FCA4AI), pp. 85–92.
No commercial editor.

Atencia, M., J. David, J. Euzenat, A. Napoli, and J. Vizzini (2019). Link key candidate extrac-
tion with relational concept analysis. Discrete Applied Mathematics.

Ganter, B. and S. O. Kuznetsov (2001). Pattern structures and their projections. In ICCS, pp.
129–142. Springer.

Ganter, B. and R. Wille (2012). Formal concept analysis: mathematical foundations. Springer
Science & Business Media.

Hogan, A., A. Zimmermann, J. Umbrich, A. Polleres, and S. Decker (2012). Scalable and
distributed methods for entity matching, consolidation and disambiguation over linked data
corpora. Web Semantics: Science, Services and Agents on the World Wide Web 10, 76–110.

Ngomo, A.-C. N. and S. Auer (2011). Limes - a time-efficient approach for large-scale link
discovery on the web of data. In Twenty-Second International Joint Conference on Artificial
Intelligence.

Saïs, F., N. Pernelle, and M.-C. Rousset (2007). L2r: A logical method for reference reconcil-
iation. In Proc. AAAI, pp. 329–334.

Van Der Merwe, D., S. Obiedkov, and D. Kourie (2004). Addintent: A new incremental
algorithm for constructing concept lattices. In ICFCA, pp. 372–385. Springer.

Volz, J., C. Bizer, M. Gaedke, and G. Kobilarov (2009). Silk-a link discovery framework for
the web of data. LDOW 538.

Résumé
Links constitute the core of Linked Data philosophy. With the high growth of data publi-

shed in the web, many frameworks have been proposed to deal with the link discovery problem,
and particularly the identity links. Finding such kinds of links between different RDF data sets
is a critical task. In this position paper, we focus on link key which consists of sets of pairs
of properties identifying the same entities across heterogeneous datasets. We also propose to
formalize the problem of link key discovery using Pattern Structures (PS), the generalization
of Formal Concept Analysis dealing with non binary datasets. After providing the proper de-
finitions of link keys and setting the problem in terms of PS, we show that the intents of the
pattern concepts correspond to link keys and their extents to sets of identity links generated
by their intents. Finally, we discuss an implementation of this framework and we show the
applicability and the scalability of the proposed method.

8

